Reducing Disease Risks Caused by Pathogens Associated with Columbia River Hatcheries

Jerri Bartholomew

Department of Microbiology

Oregon State University, Corvallis, OR

Pathogen Transmission and Hatchery Risk: Mode of transmission

- Horizontal (fish to fish)
 - Most bacteria, viruses

- Indirect
 - Parasites with complex lifecycles

Require different approaches to control and have unique risks

Horizontally transmitted pathogens

Reasons:

- Endemic pathogens are already present in wild populations and any additional impacts as a result of hatchery fish are difficult to monitor
- Transmission relies on high fish densities or frequent contact with an infectious source

Renibacterium salmoninarum Bacterial Kidney Disease

- Disease transmission
 - Horizontal contact with contaminated water, via skin abrasions, by ingestion
 - Vertical*- inside egg
- Disease chronic
- Obligate pathogen

Renibacterium salmoninarum transmission from hatchery to wild fish

- Present in both wild and hatchery fish
- Disease stress mediated, high risk periods include migration and transition to salt water
- Transmission likely to occur with crowding and when fish present have high levels of Rs
- High risk practices include barging, although actual transmission has been difficult to document

IHNV transmission from hatchery to wild fish

- Laboratory study by Foott et al. (2006) demonstrated
 - cohabitation of infected hatchery smolts with natural fish did not result in transmission
 - Environmentally relevant exposure doses did not result in high mortality

1:1	1:10	1: 20
0/8	0/8	0/8
0/8	0/8	0/8
0/6	0/8	0/8
0/4	0/5	0 / 4
0/4	0/5	0/3
0/4	0/4	0/8
0 / 1	0/34	0 / 17
16 / 16	80 / 80ª	98 / 98ª
	0/8 0/8 0/6 0/4 0/4 0/4	0/8 0/8 0/8 0/8 0/6 0/8 0/4 0/5 0/4 0/5 0/4 0/4 0/1 0/34

Two-fish pool samples.

Conclusion: Transmission of IHNV from infected hatchery fish to wild fish is low risk

Indirectly transmitted pathogens

 Interactions between these parasites, hatcheries and natural populations are often complex and the risks variable

Case Study Introduction of Myxobolus cerebralis

Disease: whirling disease

Parasite introduced, now considered endemic in upper Columbia River basin

Transmission: indirect

2 spore stages invertebrate host *Tubifex tubifex*

Detection Scenario

- Hatchery imported eyed eggs
 - Hatched on well water
 - Reared on creek water
- Routine inspection Nov 2001
 - 64% juvenile RBT positive for *M.* cerebralis
 - No clinical signs

Assessment

- Parasite likely introduced by stray steelhead
- Open water supply gave parasite access to hatchery
- Hatchery provided conditions for parasite replication
- Worm host not present at high densities in the stream, thus conditions unsuitable for parasite to establish in wild

Actions and Outcomes

- Closure of hatchery outflow to protect wild fish
- Parasite not detected in sentinel fish below the hatchery after closure

Case Study Amplification of Ceratomyxa shasta

Disease: Ceratomyxosis

Parasite endemic

Transmission: indirect

2 spore stages invertebrate host *Manayunkia speciosa*

Scenario: Klamath River Iron Gate Dam/Hatchery

Mitigation hatchery situated below dam

IGD, Hatchery

Assessing the Risk:

Result: Amplification of parasite

Assessment

- Co-location of hatchery and dam increases the number of adult salmon spawning in this area
- Conditions in the river are favorable for parasite establishment
- Amplification of the parasite results in disease effects on out migrating juvenile fish

Potential Actions

- Fish passage above dam
 - passage on the Cowlitz resulted in increased disease problems in the salmon hatchery

Reducing Disease Risks From Hatcheries: Things we already do

Disease monitoring

- Increased disease monitoring prior to release
 - Prevent release of diseased fish

- Monitor adult fish for vertically transmitted pathogens
 - Identify progeny that should be isolated or culled

Reducing Disease Risks From Hatcheries: Strategies to minimize wild: hatchery interactions

- Release larger fish
 - Higher resistance to pathogens
 - Likely to migrate faster
- Time releases
 - To miss high pathogen prevalence periods in the river
 - To minimize contact with wild fish

What are we missing?

- Data and methods for evaluating disease transmission between hatchery and wild fish
- Better understanding of disease ecology in the wild
 - How could release strategies (timing, location) affect disease ecology
- Improved methods for detecting pathogens in effluent and environmental samples
- Better laboratory models for studying transmission of pathogens under conditions relevant to hatchery: wild fish interactions
- Real data on effects of disease outside hatcheries and longterm effects on survival
 - Freshwater, estuary, ocean

Reducing Disease Risks From Hatcheries: Areas for consideration

Outflow Management

- Monitor settling ponds and outflow for pathogens
- Treatment of discharge
 - Filtration, UV, ozone, sand filtration, wastewater systems

Craig Brook Natnl Fish Hatchery

Pathogens and Hatcheries What are the risks?

- Introduction of pathogens into the hatchery
 - Incoming water supply unprotected and contains fish
 - Transfers of fish from other locations
- Amplification of pathogens within the hatchery
- Release of pathogens from hatcheries
 - Directly through effluent
 - Released infected fish interacting with wild fish
- Spread between watersheds
 - Stocking, natural migration or straying
- Amplification of pathogens outside hatchery
 - High numbers of adult salmon returning to hatchery

Types of Pathogens

- Endemic pathogens —occur naturally in native fish
 - E.g. Renibacterium salmoninarum, IHNV,
 Ceratomyxa shasta
- Emerging pathogens –not historically reported
 - Environmental disturbances or anthropogenic activities may cause emergence
 - E.g. VHSV
- Exotic pathogens –originate outside the region
 - E.g. Myxobolus cerebralis

Reducing Disease Risks From Hatcheries: Things we already know

Facility location

- High quality CLEAN water with good flow
- Avoid sites below anadromous fish spawning locations

Materials and Design

- Construction using concrete or non-porous materials
- Separate areas for different life stages with separate water supplies

Good husbandry

- Regular fish health inspections

Cleanliness and biosecurity

- Use nets that minimize physical injury
- Foot-baths & disinfection baths
- Separation of equipment

Assessing the risk: extent of spread

Survey using sentinel fish and molecular detection methods

Assessing the risk: distribution of invertebrate hosts

Invertebrate host at low prevalence in stream compared to hatchery